Bibliography

[1]

J. L. Anderson. A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Climate, 9:1518–1530, 1996.

[2]

Maeregu Woldeyes Arisido, Carlo Gaetan, Davide Zanchettin, and Angelo Rubino. A bayesian hierarchical approach for spatial analysis of climate model bias in multi-model ensembles. Stochastic Environmental Research and Risk Assessment, pages 1–13, 2017.

[3]

G. P. Compo, J. S. Whitaker, P. D. Sardeshmukh, N. Matsui, R. J. Allan, and others. Sthe twentieth century reanalysis project. Q. J. Roy. Meteorol. Soc., 137(654):1–28, 2011.

[4]

D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, and others. The era-interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc, 137(656):553–597, 2011. doi:doi:10.1002/qj.828.

[5]

F. J. Doblas-Reyes, R. Hagedorn, and T. N. Palmer. The rationale behind the success of multi-model ensembles in seasonal forecasting–ii. calibration and combination. Tellus A, 57(3):234–252, 2005.

[6]

Rosie Eade, Doug Smith, Adam Scaife, Emily Wallace, Nick Dunstone, Leon Hermanson, and Niall Robinson. Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Geophysical research letters, 41(15):5620–5628, 2014.

[7]

F. A. Eckel and M. K. Walters. Calibrated probabilistic quantita- tive precipitation forecasts based on the mrf ensemble. Wea. Forecasting, 13:1132–1147, 1998.

[8]

N. S. Fučkar, D. Volpi, V. Guemas, and F. J. Doblas-Reyes. A posteriori adjustment of near-term climate predictions: accounting for the drift dependence on the initial conditions. Geophysical Research Letters, 41(14):5200–5207, 2014.

[9]

R. Gangstø, A. P. Weigel, M. A. Liniger, and and C. Appenzeller. Methodological aspects of the validation of decadal predictions. Climate Res., 55(3):181–200, 2013. doi:doi:10.3354/cr01135.

[10]

Harry R Glahn and Dale A Lowry. The use of model output statistics (mos) in objective weather forecasting. Journal of applied meteorology, 11(8):1203–1211, 1972.

[11]

T. Gneiting and M. Katzfusss. Probabilistic forecasting. Annual Review of Statistics and Its Application, 1:125–151, 2014.

[12]

T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. Tech. Rep. 463, Department of Statistics, University of Washington, 29 pp. [Available online at www.stat.washington.edu/tech.reports.], 2004.

[13]

T. Gneiting and A. E. Raftery. Weather forecasting with ensemble methods. Science, 310:248, 2005.

[14]

T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102 (477):359–378, 2007.

[15]

T. Gneiting, A. E. Raftery, F. Balabdaoui, and A. H. Westveld. Verifying probabilistic forecasts: calibration and sharpness. Proc. Workshop on Ensemble Weather Forecasting in the Short to Medium Range. Val-Morin, QC, Canada., 2003.

[16]

T. Gneiting, A. E. Raftery, A. H. Westveld, and T. Goldman. Calibrated probabilistic forecasting using ensemble model output statistics and minimum crps estimation. Monthly Weather Review, 133:1098–1118, 2005.

[17]

L. Goddard, A. Kumar, A. Solomon, D. Smith, G. Boer, P. Gonzalez, V. Kharin, W. Merryfield, C. Deserand S.J. Mason, B.P. Kirtman, R. Msadek, R. Sutton, E. Hawkins, T. Fricker, G. Hegerl, C.A.T. Ferro, D.B. Stephenson, G.A. Meehl, T. Stockdale, R. Burgman, A.M. Greene, Y. Kushnir, M. Newman, J. Carton, I. Fukumori, and T. Delworth. A verfication framework for interannual-to-decadal predictions experiments. Climate Dynamics, 40:245–272, 2013.

[18]

T. M. Hamill. Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129:550–560, 2001.

[19]

T. M. Hamill and S. J. Colucci. Verification of eta-rsm short-range ensemble forecasts. Mon. Wea. Rev., 125:1312–1327, 1997.

[20]

J. H. Jungclaus, N. Fischer, H. Haak, K. Lohmann, J. Marotzke, D. Mateiand U. Mikolajewicz, D. Notz, and J. S. von Storch. Characteristics of the ocean simu- lations in the max planck institute ocean model (mpiom) the ocean component of the mpi-earth system model. J. Adv. Model. Earth Syst, 5(2):422–446, 2013.

[21]

J. D. Keller and A. Hense. A new non-gaussian evaluation method for ensemble forecasts based on analysis rank histograms. Meteorologische Zeitschrift, 20(2):107–117, 2011.

[22]

V. V. Kharin, G. J. Boer, W. J. Merryfield, J. F. Scinocca, and W-S Lee. Statistical adjustment of decadal predictions in a changing climate. Geophysical Research Letters, 2012.

[23]

V. V. Kharin and F. W. Zwiers. Improved seasonal probability forecasts. J. Climate, 16:1684–1701, 2003.

[24]

T. Kruschke, H. W. Rust, C. Kadow, W. A. Müller, H. Pohlmann, G. C. Leckebusch, and U. Ulbrich. Probabilistic evaluation of decadal prediction skill regarding northern hemisphere winter storms. Meteor. Z, 01:–, 2015. doi:10.1127/metz/2015/0641.

[25]

J. Kröger, H. Pohlmann, F. Sienz, J. Marotzke, J. Baehr, A. Köhl, K. Modali, I. Polkova, D. Stammer, F. Vamborg, and W. A. Müller. Full-field initialized decadal predictions with the mpi earth system model: an initial shock in the north atlantic. Clim. Dyn, :, 2017, submitted.

[26]

A. Köhl. Evaluation of the gecco2 ocean synthesis: transports of volume, heat and freshwater in the atlantic. Quart. J. Roy. Meteor. Soc., 141(686):166–181, 2015.

[27]

J. Marotzke, W. A. Müller, F. S. E. Vamborg, P. Becker, U. Cubasch, H. Feldmann, F. Kaspar, C. Kottmeier, C. Marini, I. Polkova, and others. Miklip – a national research project on decadal climate prediction. Bull. Amer. Meteorol. Soc., 97(12):2379–2394, 2016.

[28]

D. Matei, J. Baehr, J. H. Jungclaus, H. Haak, W. A. Müller, and J. Marotzke. Multiyear prediction of monthly mean atlantic meridional overturning circulation at 26.5 n. Science, 335(6064):76–79, 2012.

[29]

P. McCullagh and J. Nelder. Generalized Linear Models. CRC Press, Boca Raton, Fla, 2 edition, 1989.

[30]

G. A. Meehl, L. Goddard, G. J. Boer, R. Burgman, G. Branstator, C. Cassou, S. Corti, G. Danabasoglu, F. Doblas-Reyes, E. Hawkins, and others. Decadal climate prediction: an update from the trenches, b. am. meteorol. soc., 95, 243–267, doi: 10.1175. Technical Report, BAMS-D-12-00241.1, 2014.

[31]

J. W. Messner, G. J Mayr, and A. Zeileis. Non-homogeneous boosting for predictor selection in ensemble post processing. Monthly Weather Review,, 145(1):137––147, 2017.

[32]

W. A. Mueller, J. Baehr, H. Haak, J. H Jungclaus, J. Kröger, D. Matei, D. Notz, H. Pohlmann, J.S. Storch, and J. Marotzke. Forecast skill of multi-year seasonal means in the decadal prediction system of the max planck institute for meteorology. Geophysical Research Letters, 2012.

[33]

J. A. Nelder and R. Mead. A simplex method for function minimization. The computer journal, 7(4):308–313, 1965.

[34]

T. Palmer, R. Buizza, R. Hagedorn, A. Lawrence, M. Leutbecher, and L. Smith. Ensemble prediction: a pedagogical perspective. ECMWF newsletter, 106:10–17, 2006.

[35]

T. N. Palmer, F. J. Doblas-Reyes, A. Weisheimer, and M. J. Rodwell. Toward seamless prediction: calibration of climate change projections using seasonal forecasts. Bulletin of the American Meteorological Society, 89(4):459–470, 2008.

[36]

Alexander Pasternack, Jonas Bhend, Mark A Liniger, Henning W Rust, Wolfgang A Müller, and Uwe Ulbrich. Parametric decadal climate forecast recalibration (deforest 1.0). Geoscientific Model Development, 11:351–368, 2018.

[37]

H. Pohlmann, J. H. Jungclaus, A. Köhl, D. Stammer, and J. Marotzke. Initializing decadal climate predictions with the gecco oceanic synthesis: effects on the north atlantic. Journal of Climate, 22(14):3926–3938, 2009.

[38]

H. Pohlmann, W. A. Mueller, K. Kulkarni, M. Kameswarrao, D. Matei, F.S.E. Vamborg, C. Kadow, S. Illing, and J. Marotzke. Improved forecast skill in the tropics in the new miklip decadal climate predictions. Geophysical Research Letters, 40(21):5798–5802, 2013a.

[39]

A. E. Raftery, T. Gneiting, F. Balabdaoui, and M. Polakowski. Using bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review, 133(5):1155–1174, 2005.

[40]

N. A. Rayner, D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, and others. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108(D14):4407, 2003.

[41]

Philip G Sansom, Christopher AT Ferro, David B Stephenson, Lisa Goddard, and Simon J Mason. Best practices for postprocessing ensemble climate forecasts. part i: selecting appropriate recalibration methods. Journal of Climate, 29(20):7247–7264, 2016.

[42]

M. Schmid and T. Hothorn. Boosting additive models using component-wise p-splines. Computational Statistics & Data Analysis, 53(2):298–311, 2008.

[43]

S. Siegert. "package ‘specsverification’.". :, 2015. doi:.

[44]

S. Siegert, P. G Sansom, and R. Williams. Parameter uncertainty in forecast recalibration. Quarterly Journal of the Royal Meteorological Society, 2015.

[45]

J. M. Sloughter, A. E. Raftery, T. Gneiting, and C. Fraley. Probabilistic quantitative precipitation forecasting using bayesian model averaging. Monthly Weather Review, 135(9):3209–3220, 2007.

[46]

B. Stevens, M. Giorgetta, M. Esch, T. Mauritsen, and others. Atmospheric component of the mpi-m earth system model: echam6. J. Adv. Model. Earth Syst, 5(2):146–172, 2013. doi:10.1002/jame.20015.

[47]

O. Talagrand, R. Vautard, and B. Strauss. Evaluation of probabilistic prediction systems. Proc. Workshop on Predictability, Reading, United Kingdom, European Centre for Medium- Range Weather Forecasts., :1–25, 1997.

[48]

Claudia Tebaldi, Richard L Smith, Doug Nychka, and Linda O Mearns. Quantifying uncertainty in projections of regional climate change: a bayesian approach to the analysis of multimodel ensembles. Journal of Climate, 18(10):1524–1540, 2005.

[49]

R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal Statist. Soc. B, pages 267–288, 1996.

[50]

S. Uppala, P. Kallberg, A. Simmons, U. Andrae, and others. The era-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131:2961–3012, 2005.

[51]

G. J. van Oldenborgh, F. Doblas Reyes, B. Wouters, and W. Hazeleger. Skill in the trend and internal variability in a multi-model decadal prediction ensemble. In EGU General Assembly Conference Abstracts, volume 12, 9946. 2010.

[52]

A. P. Weigel, M. A. Liniger, and C. Appenzeller. Seasonal ensemble forecasts: are recalibrated single models better than multimodels? Mon. Weather Rev., 137(4):1460–1479, 2009.

[53]

T. W Yee. VGAM: vector generalized linear and additive models. R package version 0.7-7, URL http://CRAN. R-project. org/package= VGAM, 2008.

[54]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2016. URL: https://www.R-project.org/.